Canonical Voices

Posts tagged with 'debian'

pitti

I have used LaTeX and latex-beamer for pretty much my entire life of document and presentation production, i. e. since about my 9th school grade. I’ve always found the LaTeX syntax a bit clumsy, but with good enough editor shortcuts to insert e. g. \begin{itemize} \item...\end{itemize} with just two keystrokes, it has been good enough for me.

A few months ago a friend of mine pointed out pandoc to me, which is just simply awesome. It can convert between a million document formats, but most importantly take Markdown and spit out LaTeX, or directly PDF (through an intermediate step of building a LaTeX document and calling pdftex). It also has a template for beamer. Documents now look soo much more readable and are easier to write! And you can always directly write LaTeX commands without any fuss, so that you can use markdown for the structure/headings/enumerations/etc., and LaTeX for formulax, XYTex and the other goodies. That’s how it should always should have been! ?

So last night I finally sat down and created a vim config for it:

"-- pandoc Markdown+LaTeX -------------------------------------------

function s:MDSettings()
    inoremap <buffer> <Leader>n \note[item]{}<Esc>i
    noremap <buffer> <Leader>b :! pandoc -t beamer % -o %<.pdf<CR><CR>
    noremap <buffer> <Leader>l :! pandoc -t latex % -o %<.pdf<CR>
    noremap <buffer> <Leader>v :! evince %<.pdf 2>&1 >/dev/null &<CR><CR>

    " adjust syntax highlighting for LaTeX parts
    "   inline formulas:
    syntax region Statement oneline matchgroup=Delimiter start="\$" end="\$"
    "   environments:
    syntax region Statement matchgroup=Delimiter start="\\begin{.*}" end="\\end{.*}" contains=Statement
    "   commands:
    syntax region Statement matchgroup=Delimiter start="{" end="}" contains=Statement
endfunction

autocmd BufRead,BufNewFile *.md setfiletype markdown
autocmd FileType markdown :call <SID>MDSettings()

That gives me “good enough” (with some quirks) highlighting without trying to interpret TeX stuff as Markdown, and shortcuts for calling pandoc and evince. Improvements appreciated!

Read more
pitti

Yesterday’s autopkgtest 3.2 release brings several changes and improvements that developers should be aware of.

Cleanup of CLI options, and config files

Previous adt-run versions had rather complex, confusing, and rarely (if ever?) used options for filtering binaries and building sources without testing them. All of those (--instantiate, --sources-tests, --sources-no-tests, --built-binaries-filter, --binaries-forbuilds, and --binaries-fortests) now went away. Now there is only -B/--no-built-binaries left, which disables building/using binaries for the subsequent unbuilt tree or dsc arguments (by default they get built and their binaries used for tests), and I added its opposite --built-binaries for completeness (although you most probably never need this).

The --help output now is a lot easier to read, both due to above cleanup, and also because it now shows several paragraphs for each group of related options, and sorts them in descending importance. The manpage got updated accordingly.

Another new feature is that you can now put arbitrary parts of the command line into a file (thanks to porting to Python’s argparse), with one option/argument per line. So you could e. g. create config files for options and runners which you use often:

$ cat adt_sid
--output-dir=/tmp/out
-s
---
schroot
sid

$ adt-run libpng @adt_sid

Shell command tests

If your test only contains a shell command or two, or you want to re-use an existing upstream test executable and just need to wrap it with some command like dbus-launch or env, you can use the new Test-Command: field instead of Tests: to specify the shell command directly:

Test-Command: xvfb-run -a src/tests/run
Depends: @, xvfb, [...]

This avoids having to write lots of tiny wrappers in debian/tests/. This was already possible for click manifests, this release now also brings this for deb packages.

Click improvements

It is now very easy to define an autopilot test with extra package dependencies or restrictions, without having to specify the full command, using the new autopilot_module test definition. See /usr/share/doc/autopkgtest/README.click-tests.html for details.

If your test fails and you just want to run your test with additional dependencies or changed restrictions, you can now avoid having to rebuild the .click by pointing --override-control (which previously only worked for deb packages) to the locally modified manifest. You can also (ab)use this to e. g. add the autopilot -v option to autopilot_module.

Unpacking of test dependencies was made more efficient by not downloading Python 2 module packages (which cannot be handled in “unpack into temp dir” mode anyway).

Finally, I made the adb setup script more robust and also faster.

As usual, every change in control formats, CLI etc. have been documented in the manpages and the various READMEs. Enjoy!

Read more
pitti

We currently use completely different methods and tools of building test beds and running tests for Debian vs. Click packages, for normal uploads vs. CI airline landings vs. upstream project merge proposal testing, and keep lots of knowledge about Click package test metadata external and not easily accessible/discoverable.

Today I released autopkgtest 3.0 (and 3.0.1 with a few minor updates) which is a major milestone in unifying how we run package tests both locally and in production CI. The goals of this are:

  • Keep all test metadata, such as test dependencies, commands to run the test etc., in the project/package source itself instead of external. We have had that for a long time for Debian packages with DEP-8 and debian/tests/control, but not yet for Ubuntu’s Click packages.
  • Use the same tools for Debian and Click packages to simplify what developers have to know about and to reduce the amount of test infrastructure code to maintain.
  • Use the exact same testbeds and test runners in production CI than what developers use locally, so that you can reproduce and investigate failures.
  • Re-use the existing autopkgtest capabilities for using various kinds of testbeds, and conversely, making all new testbed types immediately available to all package formats.
  • Stop putting tests into the Ubuntu archive as packages (such as mediaplayer-app-autopilot). This just adds packaging and archive space overhead and also makes updating tests a lot harder and taking longer than it should.

So, let’s dive into the new features!

New runner: adt-virt-ssh

We want to run tests on real hardware such as a laptop of a particular brand with a particular graphics card, or an Ubuntu phone. We also want to restructure our current CI machinery to run tests on a real OpenStack cloud and gradually get rid of our hand-maintained QA lab with its test machines. While these use cases seem rather different, they both have in common that there is an already existing machine which is pretty much only accessible with ssh. Once you have an ssh connection, they look pretty much the same, you just need different initial setup (like fiddling with adb, calling nova boot, etc.) to prepare them.

So the new adt-virt-ssh runner factorizes all the common bits such as communicating with adt-run, auto-detecting sudo availability, doing SSH connection sharing etc., and delegates the target specific bits to a “setup script”. E. g. we could specify --setup-script ssh-setup-nova or --setup-script ssh-setup-adb which would then get called with open at the appropriate time by adt-run; it calls the nova commands to create a VM, or run a few adb commands to install/start ssh and install the public key. Then autopkgtest does its thing, and eventually calls the script with cleanup again. The actual protocol is a bit more involved (see manpage), but that’s the general idea.

autopkgtest now ships readymade scripts for these two use cases. So you could e. g. run the libpng tests in a temporary cloud VM:

# if you don't have one, create it with "nova keypair-create"
$ nova keypair-list
[...]
| pitti | 9f:31:cf:78:50:4f:42:04:7a:87:d7:2a:75:5e:46:56 |

# find a suitable image
$ nova image-list 
[...]
| ca2e362c-62c9-4c0d-82a6-5d6a37fcb251 | Ubuntu Server 14.04 LTS (amd64 20140607.1) - Partner Image                         | ACTIVE |  

$ nova flavor-list 
[...]
| 100 | standard.xsmall  | 1024      | 10   | 10        |      | 1     | 1.0         | N/A       |

# now run the tests: please be patient, this takes a few mins!
$ adt-run libpng --setup-commands="apt-get update" --- ssh -s /usr/share/autopkgtest/ssh-setup/nova -- \
   -f standard.xsmall -i ca2e362c-62c9-4c0d-82a6-5d6a37fcb251 -k pitti
[...]
adt-run [16:23:16]: test build:  - - - - - - - - - - results - - - - - - - - - -
build                PASS
adt-run: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ tests done.

Please see man adt-virt-ssh for details how to use it and how to write setup scripts. There is also a commented /usr/share/autopkgtest/ssh-setup/SKELETON template for writing your own for your use cases. You can also not use any setup script and just specify user and host name as options, but please remember that the ssh runner cannot clean up after itself, so never use this on important machines which you can’t reset/reinstall!

Test dependency installation without apt/root

Ubuntu phones with system images have a read-only file system where you can’t install test dependencies with apt. A similar case is using the “null” runner without root. When apt-get install is not available, autopkgtest now has a reduced fallback mode: it downloads the required test dependencies, unpacks them into a temporary directory, and runs the tests with $PATH, $PYTHONPATH, $GI_TYPELIB_PATH, etc. pointing to the unpacked temp dir. Of course this only works for packages which are relocatable in that way, i. e. libraries, Python modules, or command line tools; it will totally fail for things which look for config files, plugins etc. in hardcoded directory paths. But it’s good enough for the purposes of Click package testing such as installing autopilot, libautopilot-qt etc.

Click package support

autopkgtest now recognizes click source directories and *.click package arguments, and introduces a new test metadata specification syntax in a click package manifest. This is similar in spirit and capabilities to DEP-8 debian/tests/control, except that it’s using JSON:

    "x-test": {
        "unit": "tests/unittests",
        "smoke": {
            "path": "tests/smoketest",
            "depends": ["shunit2", "moreutils"],
            "restrictions": ["allow-stderr"]
        },
        "another": {
            "command": "echo hello > /tmp/world.txt"
        }
    }

For convenience, there is also some magic to make running autopilot tests particularly simple. E. g. our existing click packages usually specify something like

    "x-test": {
        "autopilot": "ubuntu_calculator_app"
    }

which is enough to “do what I mean”, i. e. implicitly add the autopilot test depends and run autopilot with the specified test module name. You can specify your own dependencies and/or commands, and restrictions etc., of course.

So with this, and the previous support for non-apt test dependencies and the ssh runner, we can put all this together to run the tests for e. g. the Ubuntu calculator app on the phone:

$ bzr branch lp:ubuntu-calculator-app
# built straight from that branch; TODO: where is the official" download URL?
$ wget http://people.canonical.com/~pitti/tmp/com.ubuntu.calculator_1.3.283_all.click
$ adt-run ubuntu-calculator-app/ com.ubuntu.calculator_1.3.283_all.click --- \
      ssh -s /usr/share/autopkgtest/ssh-setup/adb
[..]
Traceback (most recent call last):
  File "/tmp/adt-run.KfY5bG/tree/tests/autopilot/ubuntu_calculator_app/tests/test_simple_page.py", line 93, in test_divide_with_infinity_length_result_number
    self._assert_result("0.33333333")
  File "/tmp/adt-run.KfY5bG/tree/tests/autopilot/ubuntu_calculator_app/tests/test_simple_page.py", line 63, in _assert_result
    self.main_view.get_result, Eventually(Equals(expected_result)))
  File "/usr/lib/python3/dist-packages/testtools/testcase.py", line 406, in assertThat
    raise mismatch_error
testtools.matchers._impl.MismatchError: After 10.0 seconds test failed: '0.33333333' != '0.3'

Ran 33 tests in 295.586s
FAILED (failures=1)

Note that the current adb ssh setup script deals with some things like applying the autopilot click AppArmor hooks and disabling screen dimming, but it does not do the first-time setup (connecting to network, doing the gesture intro) and unlocking the screen. These are still on the TODO list, but I need to find out how to do these properly. Help appreciated!

Click app tests in schroot/containers

But, that’s not the only thing you can do! autopkgtest has all these other runners, so why not try and run them in a schroot or container? To emulate the environment of an Ubuntu Touch session I wrote a --setup-commands script:

adt-run --setup-commands /usr/share/autopkgtest/setup-commands/ubuntu-touch-session \
    ubuntu-calculator-app/ com.ubuntu.calculator_1.3.283_all.click --- schroot utopic

This will actually work in the sense of running (and succeeding) the autopilot tests, but it will fail due to a lot of libust[11345/11358]: Error: Error opening shm /lttng-ust-wait... warnings on stderr. I don’t know what these mean, just that I also see them on the phone itself occasionally.

I also wrote another setup-commands script which emulates “read-only apt”, so that you can test the “unpack only” fallback. So you could prepare a container with click and the App framework preinstalled (so that it doesn’t always take ages to install them), starting from a standard adt-build-lxc container:

$ sudo lxc-clone -o adt-utopic -n click
$ sudo lxc-start -n click
  # run "sudo apt-get install click ubuntu-sdk-libs ubuntu-app-launch-tools" there
  # then "sudo powerdown"

# current apparmor profile doesn't allow remounting something read-only
$ echo "lxc.aa_profile = unconfined" | sudo tee -a /var/lib/lxc/click/config

Now that container has enough stuff preinstalled to be reasonably fast to set up, and the remaining test dependencies (mostly autopilot) work fine with the unpack/$*_PATH fallback:

$ adt-run --setup-commands /usr/share/autopkgtest/setup-commands/ubuntu-touch-session \
          --setup-commands /usr/share/autopkgtest/setup-commands/ro-apt \
          ubuntu-calculator-app/ com.ubuntu.calculator_1.3.283_all.click \
          --- lxc -es click

This will successfully run all the tests, and provided you have apt-cacher-ng installed, it only takes a few seconds to set up. This might be a nice thing to do on merge proposals, if you don’t have an actual phone at hand, or don’t want to clutter it up.

autopkgtest 3.0.1 will be available in Utopic tomorrow (through autosyncs). If you can’t wait to try it out, download it from my people.c.c page ?.

Feedback appreciated!

Read more
pitti

Hot on the heels of my previous annoucement of my systemd PPA for trusty, I’m now happy to announce that the latest systemd 204-10ubuntu1 just landed in Utopic, after sorting out enough of the current uninstallability in -proposed. The other fixes (bluez, resolvconf, lightdm, etc.) already landed a few days ago. Compared to the PPA these have a lot of other fixes and cleanups, due to the excellent hackfest that we held last weekend.

So, upgrade today and let us know about problems in bugs tagged “systemd-boot”.

I think systemd in current utopic works well enough to not break a developer’s day to day workflow, so we can now start parallelizing the work of identifying packages which only have upstart jobs and provide corresponding systemd units (or SysV script). Also, this hasn’t yet been tested on the phone at all, I’m sure that it’ll require quite some work (e. g. lxc-android-config has a lot of upstart jobs). To clarify, there is nofixed date/plan/deadline when this will be done, in particular it might well last more than one release cycle. So we’ll “release” (i. e. switch to it as a default) when it’s ready :-)

Read more
pitti

On the last UDS we talked about migrating from upstart to systemd to boot Ubuntu, after Mark announced that Ubuntu will follow Debian in that regard. There’s a lot of work to do, but it parallelizes well once developers can run systemd on their workstations or in VMs easily and the system boots up enough to still be able to work with it.

So today I merged our systemd package with Debian again, dropped the systemd-services split (which wasn’t accepted by Debian and will be unnecessary now), and put it into my systemd PPA. Quite surprisingly, this booted a fresh 14.04 VM pretty much right away (of course there’s no Plymouth prettiness). The main two things which were missing were NetworkManager and lightdm, as these don’t have an init.d script at all (NM) or it isn’t enabled (lightdm). Thus the PPA also contains updated packages for these two which provide a proper systemd unit. With that, the desktop is pretty much fully working, except for some details like cron not running. I didn’t go through /etc/init/*.conf with a small comb yet to check which upstart jobs need to be ported, that’s now part of the TODO list.

So, if you want to help with that, or just test and tell us what’s wrong, take the plunge. In a 14.04 VM (or real machine if you feel adventurous), do

  sudo add-apt-repository ppa:pitti/systemd
  sudo apt-get update
  sudo apt-get dist-upgrade

This will replace systemd-services with systemd, update network-manager and lightdm, and a few libraries. Up to now, when you reboot you’ll still get good old upstart. To actually boot with systemd, press Shift during boot to get the grub menu, edit the Ubuntu stanza, and append this to the linux line: init=/lib/systemd/systemd.

For the record, if pressing shift doesn’t work for you (too fast, VM, or similar), enable the grub menu with

  sudo sed -i '/GRUB_HIDDEN_TIMEOUT/ s/^/#/' /etc/default/grub
  sudo update-grub

Once you are satisfied that your system boots well enough, you can make this permanent by adding the init= option to /etc/default/grub (and possibly remove the comment sign from the GRUB_HIDDEN_TIMEOUT lines) and run sudo update-grub again. To go back to upstart, just edit the file again, remove the init=sudo update-grub again.

I’ll be on the Debian systemd/GNOME sprint next weekend, so I feel reasonably well prepared now. :-)

Update: As the comments pointed out, this bricked /etc/resolv.conf. I now uploaded a resolvconf package to the PPA which provides the missing unit (counterpart to the /etc/init/resolvconf.conf upstart job) and this now works fine. If you are in that situation, please boot with upstart, and do the following to clean up:

  sudo rm /etc/resolv.conf
  sudo ln -s ../run/resolvconf/resolv.conf /etc/resolv.conf

Then you can boot back to systemd.

Update 2: If you want to help testing, please file bugs with a systemd-boot tag. See the list of known bugs when booting with systemd.

Read more
pitti

The current default D-BUS configuration (at least on Ubuntu) disallows monitoring method calls on the system D-BUS (dbus-monitor --system), which makes debugging rather cumbersome; this has worked years ago, but apparently got changed for security reasons. It took me a half an hour to figure out how to enable this for debugging, and as this has annoyingly little Google juice (I didn’t find any solution), let’s add some.

The trick seems to be to set a global policy to be able to eavesdrop any method call after the individual /etc/dbus-1/system.d/*.conf files applied their restrictions, for which there is already a convenient facility. Create a file /etc/dbus-1/system-local.conf with

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE busconfig PUBLIC
  "-//freedesktop//DTD D-BUS Bus Configuration 1.0//EN"
  "http://www.freedesktop.org/standards/dbus/1.0/busconfig.dtd">

<busconfig>
  <policy user="root">
    <!-- Allow everything to be sent -->
    <allow send_destination="*" eavesdrop="true"/>
    <!-- Allow everything to be received -->
    <allow eavesdrop="true"/>
    <allow send_type="method_call"/>
  </policy>
</busconfig>

Then sudo dbus-monitor --system displays everything. Needless to say that you don’t want this file on any production system!

Does anyone know an easier way? My first naive stab was to run dbus-monitor as root, but that doesn’t make any difference at all.

Update: Turns out this is already described in a better way at https://wiki.ubuntu.com/DebuggingDBus. Yay me for not finding that.. I updated above recipe to limit access to root, which is much better indeed.

Read more
pitti

I did a 0.2.2 maintenance release for umockdev to fix building with Vala 0.16.1, gcc 4.8 (the changed sizeof behaviour caused segfaults), and current udev releases (umockdev-record stumbled over the new “link priority” fields of udevadm). There are also a couple of bug fixes, but no new features.

Read more
pitti

Paul Wise poked me this morning about uploading fatrace (“file access trace”, see the original announcement for details) to Debian, thanks for the reminder!

So I filed an Intent To Package, and will upload it in a few days, unless some discussion evolves.

I also took the opportunity to do some modernization: The power-usage-report script now uses the current PowerTop 2.x instead of the old 1.13, uses Python 3 now, and includes the “process device activity” in the report. I released this as 0.5. The actual fatrace binary didn’t change its behaviour, it just got some code optimizations; thanks to Yann Droneaud for those.

Read more
pitti

PostgreSQL just released security updates. 9.1 (as found in Debian testing and unstable and Ubuntu 11.10 and later) is affected by a critical remote vulnerability which potentially allows anyone who can access the TCP port (without credentials) to corrupt local files. If your PostgreSQL database exposes the TCP port to any potentially untrusted location, please shut down your servers and update now!

PostgreSQL 8.4 for Debian stable (squeeze) and Ubuntu 8.04 LTS and 10.04 LTS also got an update, but these are much less urgent.

Debian and Ubuntu advisories for all stable releases, as well as Debian testing are going out as we speak. The updates are already on security.debian.org and security.ubuntu.com.

I also uploaded updates for Debian unstable (8.4, 9.1, and 9.2 in experimental) and the Ubuntu backports PPA, but it will take a bit for these to build as we don’t have embargoed staging builds for those. Christoph updated the apt.postgresql.org repository as well.

Warning: If you use the current Ubuntu raring Beta-2 candidate images, you will still have the old version. So if you do anything serious with those installations, please make sure to upgrade immediately.

Update: Debian and Ubuntu security announcements have been sent out, and all packages in the backports PPA are built.

Please see the official FAQ if you want to know some more details about the nature of the vulnerabilities.

Read more
pitti

I just pushed out a new python-dbusmock release 0.6.

Calling a method on the mock now emits a MethodCalled signal on the org.freedesktop.DBus.Mock interface. In some cases this is easier to track than parsing the mock’s log or using GetMethodCalls. Thanks to Lars Uebernickel for this.

DBusMockObject.AddTemplate() and DBusTestCase.spawn_server_template() can now load local templates from your own project by specifying a path to a *.py file as template name. Thanks to Lucas De Marchi for this feature.

I also wrote a quite comprehensive template for systemd’s logind. It stubs out the power management functionality as well as user/seat/session objects, and is convincing enough for loginctl. Some bits like AttachDevice is missing, as this sounds unlikely to be required for D-BUS mock tests, but please let me know if you need anything else.

The mock processes now terminate automatically if their connected D-BUS goes down, as advertised in the documentation.

You can get the new tarball from Launchpad, and I uploaded it to Debian experimental now.

Enjoy!

Read more
pitti

Many libraries build a GObject introspection repository (*.gir) these days which allows the library to be used from many scripting (Python, JavaScript, Perl, etc.) and other (e. g. Vala) languages without the need for manually writing bindings for each of those.

One issue that I hear surprisingly often is “there is zero documentation for those bindings”. Tools for building documentation out of a .gir have existed for a long time already, just far too many people seem to not know about them.

For example, to build Yelp XML documentation out of the libnotify bindings for Python:

  $ g-ir-doc-tool --language=Python -o /tmp/notify-doc /usr/share/gir-1.0/Notify-0.7.gir

Then you can call yelp /tmp/notify-doc to browse the documentation. You can of course also use the standard Mallard tools to convert them to HTML for sticking them on a website:

  $ cd /tmp/notify-doc
  $ yelp-build html .

Admittedly they are far from pretty, and there are still lots of refinements that should be done for the documentation itself (like adding language specific examples) and also for the generated result (prettification, dynamic search, and what not), but it’s certainly far from “nothign”, and a good start.

If you are interested in working on this, please show up in #introspection or discuss it on bugzilla, desktop-devel-list@, or the library specific lists/bug trackers.

Read more
pitti

I just released umockdev 0.2.

The big new feature of this release is support for evdev ioctls. I. e. you can now record what e. g. X.org is doing to touchpads, touch screens, etc.:

  $ umockdev-record /dev/input/event15 > /tmp/touchpad.umockdev
  # umockdev-record -i /tmp/touchpad.ioctl /dev/input/event15 -- Xorg -logfile /dev/null

and load that back into a testbed with X.org using the dummy driver:

  cat <<EOF > xorg-dummy.conf
  Section "Device"
        Identifier "test"
        Driver "dummy"
  EndSection
  EOF

  $ umockdev-run -l /tmp/touchpad.umockdev -i /dev/input/event15=/tmp/touchpad.ioctl -- \
       Xorg -config xorg-dummy.conf -logfile /tmp/X.log :5

Then e. g. DISPLAY=:5 xinput will recognize the simulated device. Note that Xvfb won’t work as that does not use udev for device discovery, but only adds the XTest virtual devices and nothing else, so you need to use the real X.org with the dummy driver to run this as a normal user.

This enables easier debugging of new kinds of input devices, as well as writing tests for handling multiple touchscreens/monitors, integration tests of Wacom devices, and so on.

This release now also works with older automakes and Vala 0.16, so that you can use this from Ubuntu 12.04 LTS. The daily PPA now also has packages for that.

Attention: This version does not work any more with recorded ioctl files from version 0.1.

More detailled list of changes:

  • umockdev-run: Fix running of child program to keep stdin.
  • preload: Fix resolution of “/dev” and “/sys”
  • ioctl_tree: Fix endless loop when the first encountered ioctl was unknown
  • preload: Support opening a /dev node multiple times for ioctl emulation (issue #3)
  • Fix parallel build (issue #2)
  • Support xz compressed ioctl files in umockdev_testbed_load_ioctl().
  • Add example umockdev and ioctl files for a gphoto camera and an MTP capable mobile phone.
  • Fix building with automake 1.11.3 and Vala 0.16.
  • Generalize ioctl recording and emulation for ioctls with simple structs, i. e. no pointer fields. This makes it much easier to add more ioctls in the future.
  • Store return values of ioctls in records, as they are not always 0 (like EVIOCGBIT)
  • Add support for ioctl ranges (like EVIOCGABS) and ioctls with variable length (like EVIOCGBIT).
  • Add all reading evdev ioctls, for recording and mocking input devices like touch pads, touch screens, or keyboards. (issue #1)

Read more
pitti

What is this?

umockdev is a set of tools and a library to mock hardware devices for programs that handle Linux hardware devices. It also provides tools to record the properties and behaviour of particular devices, and to run a program or test suite under a test bed with the previously recorded devices loaded.

This allows developers of software like gphoto or libmtp to receive these records in bug reports and recreate the problem on their system without having access to the affected hardware, as well as writing regression tests for those that do not need any particular privileges and thus are capable of running in standard make check.

After working on it for several weeks and lots of rumbling on G+, it’s now useful and documented enough for the first release 0.1!

Component overview

umockdev consists of the following parts:

  • The umockdev-record program generates text dumps (conventionally called *.umockdev) of some specified, or all of the system’s devices and their sysfs attributes and udev properties. It can also record ioctls that a particular program sends and receives to/from a device, and store them into a text file (conventionally called *.ioctl).
  • The libumockdev library provides the UMockdevTestbed GObject class which builds sysfs and /dev testbeds, provides API to generate devices, attributes, properties, and uevents on the fly, and can load *.umockdev and *.ioctl records into them. It provides VAPI and GI bindings, so you can use it from C, Vala, and any programming language that supports introspection. This is the API that you should use for writing regression tests. You can find the API documentation in docs/reference in the source directory.
  • The libumockdev-preload library intercepts access to /sys, /dev/, the kernel’s netlink socket (for uevents) and ioctl() and re-routes them into the sandbox built by libumockdev. You don’t interface with this library directly, instead you need to run your test suite or other program that uses libumockdev through the umockdev-wrapper program.
  • The umockdev-run program builds a sandbox using libumockdev, can load *.umockdev and *.ioctl files into it, and run a program in that sandbox. I. e. it is a CLI interface to libumockdev, which is useful in the “debug a failure with a particular device” use case if you get the text dumps from a bug report. This automatically takes care of using the preload library, i. e. you don’t need umockdev-wrapper with this. You cannot use this program if you need to simulate uevents or change attributes/properties on the fly; for those you need to use libumockdev directly.

Example: Record and replay PtP/MTP USB devices

So how do you use umockdev? For the “debug a problem” use case you usually don’t want to write a program that uses libumockdev, but just use the command line tools. Let’s capture some runs from libmtp tools, and replay them in a mock environment:

  • Connect your digital camera, mobile phone, or other device which supports PtP or MTP, and locate it in lsusb. For example
      Bus 001 Device 012: ID 0fce:0166 Sony Ericsson Xperia Mini Pro
  • Dump the sysfs device and udev properties:
      $ umockdev-record /dev/bus/usb/001/012 > mobile.umockdev
  • Now record the dynamic behaviour (i. e. usbfs ioctls) of various operations. You can store multiple different operations in the same file, which will share the common communication between them. For example:
      $ umockdev-record --ioctl mobile.ioctl /dev/bus/usb/001/012 mtp-detect
      $ umockdev-record --ioctl mobile.ioctl /dev/bus/usb/001/012 mtp-emptyfolders
  • Now you can disconnect your device, and run the same operations in a mocked testbed. Please note that /dev/bus/usb/001/012 merely echoes what is in mobile.umockdev and it is independent of what is actually in the real /dev directory. You can rename that device in the generated *.umockdev files and on the command line.
      $ umockdev-run --load mobile.umockdev --ioctl /dev/bus/usb/001/012=mobile.ioctl mtp-detect
      $ umockdev-run --load mobile.umockdev --ioctl /dev/bus/usb/001/012=mobile.ioctl mtp-emptyfolders

Example: using the library to fake a battery

If you want to write regression tests, it’s usually more flexible to use the library instead of calling everything through umockdev-run. As a simple example, let’s pretend we want to write tests for upower.

Batteries, and power supplies in general, are simple devices in the sense that userspace programs such as upower only communicate with them through sysfs and uevents. No /dev nor ioctls are necessary. docs/examples/ has two example programs how to use libumockdev to create a fake battery device, change it to low charge, sending an uevent, and running upower on a local test system D-BUS in the testbed, with watching what happens with upower --monitor-detail. battery.c shows how to do that with plain GObject in C, battery.py is the equivalent program in Python that uses the GI binding. You can just run the latter like this:

  umockdev-wrapper python3 docs/examples/battery.py

and you will see that upowerd (which runs on a temporary local system D-BUS in the test bed) will report a single battery with 75% charge, which gets down to 2.5% a second later.

The gist of it is that you create a test bed with

  UMockdevTestbed *testbed = umockdev_testbed_new ();

and add a device with certain sysfs attributes and udev properties with

    gchar *sys_bat = umockdev_testbed_add_device (
            testbed, "power_supply", "fakeBAT0", NULL,
            /* attributes */
            "type", "Battery",
            "present", "1",
            "status", "Discharging",
            "energy_full", "60000000",
            "energy_full_design", "80000000",
            "energy_now", "48000000",
            "voltage_now", "12000000",
            NULL,
            /* properties */
            "POWER_SUPPLY_ONLINE", "1",
            NULL);

You can then e. g. change an attribute and synthesize a “change” uevent with

  umockdev_testbed_set_attribute (testbed, sys_bat, "energy_now", "1500000");
  umockdev_testbed_uevent (testbed, sys_bat, "change");

With Python or other introspected languages, or in Vala it works the same way, except that it looks a bit leaner due to “proper” object semantics.

Packages

I have a packaging branch for Ubuntu and a recipe to do daily builds with the latest upstream code into my daily builds PPA (for 12.10 and raring). I will soon upload it to Raring proper, too.

What’s next?

The current set of features should already get you quite far for a range of devices. I’d love to get feedback from you if you use this for anything useful, in particular how to improve the API, the command line tools, or the text dump format. I’m not really happy with the split between umockdev (sys/dev) and ioctl files and the relatively complicated CLI syntax of umockdev-record, so any suggestion is welcome.

One use case that I have for myself is to extend the coverage of ioctls for input devices such as touch screens and wacom tablets, so that we can write some tests for gnome-settings-daemon plugins.

I also want to find a way to pass ioctls back to the test suite/calling program instead of having to handle them all in the preload library, which would make it a lot more flexible. However, due to the nature of the ioctl ABI this is not easy.

Where to go to

The code is hosted on github in the umockdev project; this started out as a systemd branch to add this functionality to libudev, but after a discussion with Kay we decided to keep it separate. But I kept it in git anyway, given how popular it is today. For the bzr lovers, Launchpad has an import at lp:umockdev.

Release tarballs will be on Launchpad as well. Please file bugs and enhancement requests in the git hub tracker.

Finally, if you have questions or want to discuss something, you can always find me on IRC (pitti on Freenode or GNOME).

Thanks for your attention and happy testing!

Read more
pitti

When writing system integration tests it often happens that I want to mount some tmpfses over directories like /etc/postgresql/ or /home, and run the whole script with an unshared mount namespace so that (1) it does not interfere with the real system, and (2) is guaranteed to clean up after itself (unmounting etc.) after it ends in any possible way (including SIGKILL, which breaks usual cleanup methods like “trap”, “finally”, “def tearDown()”, “atexit()” and so on).

In gvfs’ and postgresql-common’s tests, which both have been around for a while, I prepare a set of shell commands in a variable and pipe that into unshare -m sh, but that has some major problems: It doesn’t scale well to large programs, looks rather ugly, breaks syntax highlighting in editors, and it destroys the real stdin, so you cannot e. g. call a “bash -i” in your test for interactively debugging a failed test.

I just changed postgresql-common’s test runner to use unshare/tmpfses as well, and needed a better approach. What I eventually figured out preserves stdin, $0, and $@, and still looks like a normal script (i. e. not just a single big string). It still looks a bit hackish, but I can live with that:

#!/bin/sh
set -e
# call ourselves through unshare in a way that keeps normal stdin, $0, and CLI args
unshare -uim sh -- -c "`tail -n +7 $0`" "$0" "$@"
exit $?

# unshared program starts here
set -e
echo "args: $@"
echo "mounting tmpfs"
mount -n -t tmpfs tmpfs /etc
grep /etc /proc/mounts
echo "done"

As Unix/Linux’ shebang parsing is rather limited, I didn’t find a way to do something like

#!/usr/bin/env unshare -m sh

If anyone knows a trick which avoids the “tail -n +7″ hack and having to pay attention to passing around “$@”, I’d appreciate a comment how to simplify this.

Read more
pitti

With python-dbusmock you can provide mocks for arbitrary D-BUS services for your test suites or if you want to reproduce a bug.

However, when writing actual tests for gnome-settings-daemon etc. I noticed that it is rather cumbersome to always have to set up the “skeleton” of common services such as UPower. python-dbusmock 0.2 now introduces the concept of “templates” which provide those skeletons for common standard services so that your code only needs to set up the particular properties and specific D-BUS objects that you need. These templates can be parameterized for common customizations, and they can provide additional convenience methods on the org.freedesktop.DBus.Mock interface to provide more abstract functionality like “add a battery”.

So if you want to pretend you have one AC and a half-charged battery, you can now simply do

  def setUp(self):
     (self.p_mock, self.obj_upower) = self.spawn_server_template('upower', {})

  def test_ac_bat(self):
     self.obj_upower.AddAC('mock_AC', 'Mock AC')
     self.obj_upower.AddChargingBattery('mock_BAT', 'Mock Battery', 50.0, 1200)

Or, if your code is not in Python, use the CLI/D-BUS interface, like in shell:

  # start a fake system bus
  eval `dbus-launch`
  export DBUS_SYSTEM_BUS_ADDRESS=$DBUS_SESSION_BUS_ADDRESS

  # start mock upower on the fake bus
  python3 -m dbusmock --template upower &

  # add devices
  gdbus call --system -d org.freedesktop.UPower -o /org/freedesktop/UPower \
      -m org.freedesktop.DBus.Mock.AddAC mock_ac 'Mock AC'
  gdbus call --system -d org.freedesktop.UPower -o /org/freedesktop/UPower \
      -m org.freedesktop.DBus.Mock.AddChargingBattery mock_bat 'Mock Bat' 50.0 1200

In both cases upower --dump or gnome-power-statistics will show you the expected devices (of course you need to run that within the environment of the fake $DBUS_SYSTEM_BUS_ADDRESS, or run the mock on the real system bus as root).

Iftikhar Ahmad contributed a template for NetworkManager, which allows you to easily set up ethernet and wifi devices and wifi access points. See pydoc3 dbusmock.templates.networkmanager for details and the test cases for how this looks like in practice.

I just released python-dbusmock 0.2.1 and uploaded the new version to Debian experimental. I will sync it into Ubuntu Raring in a few hours.

Read more
pitti

For writing tests for GVFS (current tests, proposed improvements) I want to run Samba as normal user, so that we can test gvfs’ smb backend without root privileges and thus can run them safely and conveniently in a “make check” environment for developers and in JHBuild for continuous integration testing. Before these tests could only run under gvfs-testbed, which needs root.

Unlike other servers such as ssh or ftp, this turned out surprisingly non-obvious and hard, so I want to document it in this blog post for posterity’s benefit.

Running the server

Running smbd itself is mainly an exercise of figuring out all the options that you need to set; Alex Larsson and I had some fun figuring out all the quirks and hiccups that happen between Ubuntu’s and Fedora’s packaging and 3.6 vs. 4.0, but finally arrived at something working.

First, you need to create an empty directory where smbd can put all its databases and state files in. For tests you would use mkdtemp(), but for easier reading I just assume mkdir /tmp/samba here.

The main knowledge is in the Samba configuration file, let’s call it /tmp/smb.conf:

[global]
workgroup = TESTGROUP
interfaces = lo 127.0.0.0/8
smb ports = 1445
log level = 2
map to guest = Bad User
passdb backend = smbpasswd
smb passwd file = /tmp/smbpasswd
lock directory = /tmp/samba
state directory = /tmp/samba
cache directory = /tmp/samba
pid directory = /tmp/samba
private dir = /tmp/samba
ncalrpc dir = /tmp/samba

[public]
path = /tmp/public
guest ok = yes

[private]
path = /tmp/private
read only = no

For running this as a normal user you need to set a port > 1024, so this uses 1445 to resemble the original (privileged) port 445. The map to guest line makes anonymous logins work on Fedora/Samba 4.0 (I’m not sure whether it’s a distribution or a version issue). Don’t ask about “dir” vs. “directory”, that’s an inconsistency in Samba; with above names it works on both 3.6 and 4.0.

We use the old “smbpasswd” backend as shipping large tdb files is usually too inconvenient and brittle for test suites. I created an smbpasswd file by running smbpasswd on a “real” Samba installation, and then using pdbedit to convert it to a smbpasswd file:

sudo smbpasswd -a martin
sudo pdbedit -i tdbsam:/var/lib/samba/passdb.tdb -e smbpasswd:/tmp/smbpasswd

The result for password “foo” is

myuser:0:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX:AC8E657F83DF82BEEA5D43BDAF7800CC:[U          ]:LCT-507C14C7:

which you are welcome to copy&paste (you can replace “myuser” with any valid user name, of course).

This also defines two shares, one public, one authenticated. You need to create the directories and populate them a bit:

mkdir /tmp/public /tmp/private
echo hello > /tmp/public/hello.txt
echo secret > /tmp/private/myfile.txt

Now you can run the server with

smbd -iFS -s /tmp/smb.conf

The main problem with this approach is that smbd exits (“Server exit (failed to receive smb request)”) after a client terminates, so you need to write your tests in a way to only run one connection/request per test, or to start smbd in a loop.

Running the client

If you merely use the smbclient command line tool, this is rather simple: It has a -p option for specifying the port:

$ smbclient -p 1445 //localhost/private
Enter martin's password: [enter "foo" here]
Domain=[TESTGROUP] OS=[Unix] Server=[Samba 3.6.6]
smb: \> dir
  .                                   D        0  Wed Oct 17 08:28:23 2012
  ..                                  D        0  Wed Oct 17 08:31:24 2012
  myfile.txt                                   7  Wed Oct 17 08:28:23 2012

In the case of gvfs it wasn’t so simple, however. Surprisingly, libsmbclient does not have an API to set the port, it always assumes 445. smbclient itself uses some internal “libcli” API which does have a way to change the port, but it’s not exposed through libsmbclient. However, Alex and I found some mailing list posts ([1], [2]) that mention $LIBSMB_PROG, and it’s also mentioned in smbclient’s manpage. It doesn’t quite work as advertised in the second ML post (you can’t set it to smbd, smbd apparently doesn’t speak the socket protocol over stdin/stdout), and it’s not being used anywhere in the current Samba sources, but what does work is to use good old netcat:

export LIBSMB_PROG="nc localhost 1445"

with that, you can use smbclient or any program using libsmbclient to talk to our test smb server running as user.

Read more
pitti

I found it surprisingly hard to determine in tearDown() whether or not the test that currently ran succeeded or not. I am writing some tests for gnome-settings-daemon and want to show the log output of the daemon if a test failed.

I now cobbled together the following hack, but I wonder if there’s a more elegant way? The interwebs don’t seem to have a good solution for this either.

    def tearDown(self):
        [...]
        # collect log, run() shows it on failures
        with open(self.daemon_log.name) as f:
            self.log_output = f.read()

    def run(self, result=None):
        '''Show log output on failed tests'''

        if result:
            orig_err_fail = result.errors + result.failures
        super().run(result)
        if result and result.errors + result.failures > orig_err_fail:
            print('\n----- daemon log -----\n%s\n------\n' % self.log_output)

Read more
pitti

I was working on writing tests for gnome-settings-daemon a week or so ago, and finally got blocked on being unable to set up upower/ConsoleKit/etc. the way I need them. Also, doing so needs root privileges, I don’t want my test suite to actually suspend my machine, and using the real service is generally not suitable for test suites that are supposed to run during “make check”, in jhbuild, and the like — these do not have the polkit privileges to do all that, and may not even have a system D-Bus running in the first place.

So I wrote a little test_upower.py helper, then realized that I need another one for systemd/ConsoleKit (for the “system idle” property), also looked at the mock polkit in udisks and finally sat down for two days to generalize this and do this properly.

The result is python-dbusmock, I just released the first tarball. With this you can easily create mock objects on D-Bus from any programming language with a D-Bus binding, or even from the shell.

The mock objects look like the real API (or at least the parts that you actually need), but they do not actually do anything (or only some action that you specify yourself). You can configure their state, behaviour and responses as you like in your test, without making any assumptions about the real system status.

When using a local system/session bus, you can do unit or integration testing without needing root privileges or disturbing a running system. The Python API offers some convenience functions like “start_session_bus()“ and “start_system_bus()“ for this, in a “DBusTestCase“ class (subclass of the standard “unittest.TestCase“).

Surprisingly I found very little precedence here. There is a Perl module, but that’s not particuarly helpful for test suites in C/Vala/Python. And there is Phil’s excellent Bendy Bus, but this has a different goal: If you want to thoroughly test a particular D-BUS service, such as ensuring that it does the right thing, doesn’t crash on bad input, etc., then Bendy Bus is for you (and python-dbusmock isn’t). However, it is too much overhead and rather inconvenient if you want to test a client-side program and just need a few system services around it which you want to set up in different states for each test.

You can use python-dbusmock with any programming language, as you can run the mocker as a normal program. The actual setup of the mock (adding objects, methods, properties, etc.) all happen via D-Bus methods on the “org.freedesktop.DBus.Mock“ interface. You just don’t have the convenience D-Bus launch API.

The simplest possible example is to create a mock upower with a single Suspend() method, which you can set up like this from Python:

import dbus
import dbusmock

class TestMyProgram(dbusmock.DBusTestCase):
[...]
    def setUp(self):
        self.p_mock = self.spawn_server('org.freedesktop.UPower',
                                        '/org/freedesktop/UPower',
                                        'org.freedesktop.UPower',
                                        system_bus=True,
                                        stdout=subprocess.PIPE)

        # Get a proxy for the UPower object's Mock interface
        self.dbus_upower_mock = dbus.Interface(self.dbus_con.get_object(
            'org.freedesktop.UPower', '/org/freedesktop/UPower'),
            'org.freedesktop.DBus.Mock')

        self.dbus_upower_mock.AddMethod('', 'Suspend', '', '', '')

[...]

    def test_suspend_on_idle(self):
        # run your program in a way that should trigger one suspend call

        # now check the log that we got one Suspend() call
        self.assertRegex(self.p_mock.stdout.readline(), b'^[0-9.]+ Suspend$')

This doesn’t depend on Python, you can just as well run the mocker like this:

python3 -m dbusmock org.freedesktop.UPower /org/freedesktop/UPower org.freedesktop.UPower

and then set up the mocks through D-Bus like

gdbus call --system -d org.freedesktop.UPower -o /org/freedesktop/UPower \
      -m org.freedesktop.DBus.Mock.AddMethod '' Suspend '' '' ''

If you use it with Python, you get access to the dbusmock.DBusTestCase class which provides some convenience functions to set up and tear down local private session and system buses. If you use it from another language, you have to call dbus-launch yourself.

Please see the README for some more details, pointers to documentation and examples.

Update: You can now install this via pip from PyPI or from the daily builds PPA.

Update 2: Adjusted blog entry for version 0.0.3 API, to avoid spreading now false information too far.

Read more
pitti

I just released PyGObject 3.3.92, for GNOME 3.5.92.

There is nothing too exciting in this release; a couple of small bug fixes and a lot of new test cases. See the detailled list of changes below.

Thanks to all contributors!

Changes:

  • release-news: Generate HTML changelog (Martin Pitt)
  • [API add] Add ObjectInfo.get_abstract method (Simon Feltman) (#675581)
  • Add deprecation warning when setting gpointers to anything other than int. (Simon Feltman) (#683599)
  • test_properties: Test accessing a property from a superclass (Martin Pitt) (#684058)
  • test_properties.py: Consistent test names (Martin Pitt)
  • test_everything: Ensure TestSignals callback does get called (Martin Pitt)
  • argument: Fix 64bit integer convertion from GValue (Nicolas Dufresne) (#683596)
  • Add Simon Feltman as a project maintainer (Martin Pitt)
  • test_signals.py: Drop global type variables (Martin Pitt)
  • test_signals.py: Consistent test names (Martin Pitt)
  • Add test cases for GValue signal arguments (Martin Pitt) (#683775)
  • Add test for GValue signal return values (Martin Pitt) (#683596)
  • Improve setting pointer fields/arguments to NULL using None (Simon Feltman) (#683150)
  • Test gint64 C signal arguments and return values (Martin Pitt)
  • Test in/out int64 GValue method arguments. (Martin Pitt) (#683596)
  • Bump g-i dependency to 1.33.10 (Martin Pitt)
  • Fix -uninstalled.pc.in file (Thibault Saunier) (#683379)

Read more
pitti

PostgreSQL 9.2 has just been released, after a series of betas and a release candidate. See for yourself what’s new, and try it out!

Packages are available in Debian experimental as well as my PostgreSQL backports PPA for Ubuntu 10.04 to 12.10, as usual.

Please note that 9.2 will not land any more in the feature frozen Debian Wheezy and Ubuntu Quantal (12.10) releases, as none of the server-side extensions are packaged for 9.2 yet.

Read more